SAT Math Level 2 Practice Paper 8

SET 1

1. If $\{(3,2),(4,2),(3,1),(7,1),(2,3)\}$ is to be a function, which one of the following must be removed from the set?
A. $(3,2)$
B. $(4,2)$
C. $(2,3)$
D. $(7,1)$
E. none of the above
2. For $f(x)=3 x^{2}+4, g(x)=2$, and $h=\{(1,1),(2,1),(3,2)\}$,
A. f is the only function
B. h is the only function
C. f and g are the only functions
D. g and h are the only functions
E. f, g, and h are all functions
3. What value(s) must be excluded from the domain of $f=\left\{(x, y): y=\frac{x+2}{x-2}\right\}$?
A. -2
B. 0
C. 2
D. 2 and -2
E. no value

SET 2

1. If $f(x)=3 x^{2}-2 x+4, f(-2)=$
A. -12
B. -4
C. -2
D. 12
E. 20
2. If $f(x)=4 x-5$ and $g(x)=3^{x}$, then $f(g(2))=$
A. 3
B. 9
C. 27
D. 31
E. none of the above
3. If $f(g(x))=4 x^{2}-8 x$ and $f(x)=x^{2}-4$, then $g(x)=$
A. $4-x$
B. x
C. $2 x-2$
D. $4 x$
E. x^{2}
4. What values must be excluded from the domain of $\left(\frac{f}{g}\right)(x)$ if $f(x)=3 x^{2}-4 x+1$ and $g(x)=3 x^{2}-3$?
A. 0
B. 1
C. 3
D. both ± 1
E. no values
5. If $g(x)=3 x+2$ and $g(f(x))=x$, then $f(2)=$
A. 0
B. 1
C. 2
D. 6
E. 8
6. If $p(x)=4 x-6$ and $p(a)=0$, then $a=$
A. -6
B. $-\frac{3}{2}$
C. $\frac{3}{2}$
D. $\frac{2}{3}$
E. 2
7. If $f(x)=e^{x}$ and $g(x)=\sin x$, then the value of $\left(f_{\circ} g\right)(\sqrt{2})$ is
A. -0.01
B. -0.8
C. 0.34
D. 1.8
E. 2.7

SET 3

1. If $f(x)=2 x-3$, the inverse of f, f^{-1}, could be represented by
A. $f^{1}(x)=3 x-2$
B. $f^{-1}(x)=\frac{1}{2 x-3}$
C. $f^{-1}(x)=\frac{x-2}{3}$
D. $f^{-1}(x)=\frac{x+2}{3}$
E. $f^{-1}(x)=\frac{x+3}{2}$
2. If $f(x)=x$, the inverse of f, f^{-1}, could be represented by
A. $f^{-1}(x)=x$
B. $f^{-1}(x)=1$
C. $f^{-1}(x)=\frac{1}{x}$
D. $f^{-1}(x)=y$
E. f^{-1} does not exist
3. The inverse of $f=\{(1,2),(2,3),(3,4),(4,1),(5,2)\}$ would be a function if the domain of f is limited to
A. $\{1,3,5\}$
B. $\{1,2,3,4\}$
C. $\{1,5\}$
D. $\{1,2,4,5\}$
E. $\{1,2,3,4,5\}$
4. Which of the following could represent the equation of the inverse of the graph in the figure?

A. $y=-2 x+1$
B. $y=2 x+1$
C. $y=\frac{1}{2} x+1$
D. $y=\frac{1}{2} x-1$
E. $y=\frac{1}{2} x-\frac{1}{2}$

SET 4

1. Which of the following relations are even?
I. $y=2$
II. $f(x)=x$
III. $x^{2}+y^{2}=1$
A. only I
B. only I and II
C. only II and III
D. only I and III
E. I, II, and III
2. Which of the following relations are odd?
I. $y=2$
II. $y=x$
III. $x^{2}+y^{2}=1$
A. only II
B. only I and II
C. only I and III
D. only II and III
E. I, II, and III
3. Which of the following relations are both odd and even?
I. $x^{2}+y^{2}=1$
II. $x^{2}-y^{2}=0$
III. $x+y=0$
A. only III
B. only I and II
C. only I and III
D. only II and III
E. I, II, and III
4. Which of the following functions is neither odd nor even?
A. $\{(1,2),(4,7),(-1,2),(0,4),(-4,7)\}$
B. $\{(1,2),(4,7),(-1,-2),(0,0),(-4,-7)\}$
C. $y=x^{3}-1$
D. $y=x^{2}-1$
E. $f(x)=-x$

SET 5

1. The slope of the line through points $A(3,-2)$ and $B(-2,-3)$ is
A. -5
B. $-\frac{1}{5}$
C. $\frac{1}{5}$
D. 1
E. 5
2. The slope of line $8 x+12 y+5=0$ is
A. $-\frac{3}{2}$
B. $-\frac{2}{3}$
C. $\frac{2}{3}$
D. 2
E. 3
3. The slope of the line perpendicular to line $3 x-5 y+8=0$ is
A. $-\frac{5}{3}$
B. $-\frac{3}{5}$
C. $\frac{3}{5}$
D. $\frac{5}{3}$
E. 3
4. The y-intercept of the line through the two points whose coordinates are $(5,-2)$ and $(1,3)$ is
A. $-\frac{5}{4}$
B. $\frac{5}{4}$
C. $\frac{17}{4}$
D. 7
E. 17
5. The equation of the perpendicular bisector of the segment joining the points whose coordinates are $(1,4)$ and $(-2,3)$ is
A. $3 x-2 y+5=0$
B. $x-3 y+2=0$
C. $3 x+y-2=0$
D. $x-3 y+11=0$
E. $x+3 y-10=0$
6. The length of the segment joining the points with coordinates $(-2,4)$ and $(3,-5)$ is
A. 2.8
B. 3.7
C. 10
D. 10.3
E. none of these
7. The slope of the line parallel to the line whose equation is $2 x+3 y=8$ is
A. -2
B. $-\frac{3}{2}$
C. $-\frac{2}{3}$
D. $\frac{2}{3}$
E. $\frac{3}{2}$
8. If the graph of $\pi x+\sqrt{2} y+\sqrt{3}=0$ is perpendicular to the graph of $a x+3 y+2=0$, then $a=$
A. -4.5
B. -2.22
C. -1.35
D. 0.45
E. 1.35
